

Update on CAR-T as 3rd-line or Later Therapy of Large B-Cell Lymphomas

Stephen J. Schuster, M.D.

University of Pennsylvania, Philadelphia, PA, USA

Rome, March 16-17 2023

Donna Camilla Savelli Hotel

President: P.L. Zinzani

Disclosures

Disclosures of Prof. Stephen J. Schuster, M.D.

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
AbbVie						х	
AstraZeneca						х	
BeiGene						х	
Caribou Biotech						х	Steering committee
Fate Therapeutics							Safety DSMB
Genentech/Roche	х					х	Steering committee
Genmab	х					х	Steering committee
Incyte/Morphosys						х	Honoraria for presentation
Kite Pharmaceuticals						х	
Legend Biotech						х	Steering committee
Novartis						х	Steering committee
Mustang Biotech						х	
Nordic Nanovector						X	Steering committee
Takeda							Honoraria for presentation

CAR-T as 3rd-line or Later Therapy: Lessons from Long-term Follow-up

1) Timing of CAR-T Therapy

- second- vs. third-line outcomes
- disease status at the time of CAR-T and outcome

2) Lymphodepletion before CAR-T Infusion

- is fludarabine-cyclophosphamide required?

3) Response Assessments after CAR-T Infusion

- timing of response assessments and outcomes

4) Immune Reconstitution

- is persistent B-cell aplasia necessary for PFS in NHL?

<u>Disclaimers</u>: These impressions are based on my own personal experiences and observations in the clinical research and practice settings, as well as on impressions gained from the literature and from discussions with other clinicians and investigators. They are *specifically related to CD19-directed, 4-1BB co-stimulated CAR-T cell products for treatment of large B-cell lymphomas*. These opinions should not be considered as dogma, but rather as current impressions that may require further validation through additional experience and formal clinical investigation.

1) Timing of CAR-T Therapy

7th POSTGRADUATE

- second- vs. third-line outcomes

Patient Characteristics in the Pivotal Trials of Axi-cel

Variable	ZUMA-1 (axi-cel)	ZUMA-7 (axi-cel group)	Variable	ZUMA-1 (axi-cel)	ZUMA-7 (axi-cel group)	Variable	ZUMA-1 (axi-cel)	ZUMA-7 (axi-cel group)
Primary end point	Overall response rate	Event-free survival	Histologic type			Progressive disease before CAR T-	1(1)	2 (1)
Patient characteristics						cell therapy — no. (%)	- (-)	- (-/
No. of patients	111 (total cohort)	180	DLBCL, NOS — no. (%)	77 (76)	126 (70)	Received CAR T-cell infusion —	101 (91)	170 (94)
	101 (infused cohort)		HGBL, DH — no./total no. (%)	NR	31/180 (17)	no. (%)	202 (32)	210 (21)
Median age (range) — <u>yr</u>	58 (23–76)	58 (21–80)						
Age ≥65 years — no. (%)	24 (24)	51 (28)	HGBL, NOS — no. (%)	0	0	Median time from enrollment to	Approx. 17	29
Study eligibility			FL grade 3B — no. (%)	0	0	CAR T-cell infusion — days		
Disease status	Refractory or relapse	Refractory or relapse	PMBL po. (%)	8 (8)	0	CAR T-cell dose	2×10 ⁵ cells/kg	2×10 ⁶ cells/kg
	≤12 mo after ASC1;	at ≤12 mo, ASC1-	11002 110. (70)	0 (0)	U U	Clinical outcomes		
	compromise	impending organ	Other or missing — no. (%)	0	23 (13)	Response — %	82	83
		compromise	Transformed lymphoma — no. (%)	16 (16)	10 (11)	Response – 70	02	65
Bridging therapy	Glucocorticoids only	Glucocorticoids only		10(10)	15(11)	Complete response — %	54	65
		(36% received)	Disease status at study entry			Median follow-up — months	27.1	25
CD19-positive — no./total no. (%)	74/82 (90)	144/180 (80)	Refractory to any therapy	80 (79) *	133 (74)	2-Yr progression-free survival —	Approx. 40	46
			Relapsed	21 (21)	47 (26)	%		
			Previous ASCT	21 (21)	NA	2-Yr overall survival — %	51	61

* In ZUMA-1, only 2 (3%) patients were primary refractory; 59

(77%) patients were refractory to second or later line therapy.

Table adapted from: Roschewski et al. N Engl J Med. 2022;386(7):692-696.

CAR-T as 3rd-line or Later Therapy: Lessons from Long-term Follow-up

1) Timing of CAR-T Therapy

7th POSTGRADUATE

T-cell infusion was approximately 17 days.

- second- vs. third-line outcomes

EFS, time from randomization to disease progression, initiation of new anticancer therapy, anycause death from, or best response of stable disease at day 150 assessment. Median time from enrollment to CAR T-cell infusion was approximately 29 days.

CAR-T as 3rd-line or Later Therapy: Lessons from Long-term Follow-up

1) Timing of CAR-T Therapy

7th POSTGRADUATE

- second- vs. third-line outcomes

PFS, Time from randomization to PD, or death from any cause, whichever occurs first.

¹Abramson et al. Lancet. 2020;396(10254):839-852; ²Kamdar, et al. Lancet. 2022;399(10343):2294-2308.

1) Timing of CAR-T Therapy

JULIET: Multivariable and Subgroup Analyses

Multivariable Analysis						
Predictive Factors Significant in Univariable Analysis	responders/patients	Odds Ratio (95% CI)				
LDH						
≤ x ULN	29/55	2 74 (0 71-10 56)				
>2 x ULN	4/21					
>1-2 x ULN	11/39	0.97 (0.23-4.06)				
>2 x ULN	4/21					
Thrombocytopenia						
CTCAE grade 0-2	43/99					
CTCAE grade 3-4	1/16	7.23 (0.84-62.31)				

· Baseline was defined as the closest time before or on the day of infusion.

7th POSTGRADUATE

- For lab analytes, such as LDH and thrombocytopenia (platelets), 93% of baseline fell on the day of infusion.
- Thrombocytopenia grading cut-offs were grade 4: <25, grade 3: 25-50, grade 2: 50-75, grade 1: 75-LLN × 10⁹/L.

Best Overall Response of CR by Subgroup Analysis

Subgroup	no. of CR/total no.		Overall response rate (95% CI)
All patients	45/115	+	39-1 (30-2-48-7)
Bulky disease Yes No	0/9 45/106	·	0.0 (0.0-33.6) 42.5 (32.9-52.4)
Pre-infusion LDH levels s1+ULN 1-2×ULN >2×ULN Pre-infusion thrombocytopenia	31/55 12/39 2/21		56 4 (42 3-69 7) 30 8 (17 0-47 6) 9 5 (1 2-30 4)
<50×10%L >50×10%L	1/16 44/99		6 3 (0 2-30 2) 44 4 (34 5-54 8) 80 100

Univariable Factors Analysed

- LDH (≤1 × ULN vs >2 × ULN)
- LDH (>1-2 × ULN vs >2 × ULN)
- · CRP (high vs low/normal)
- Platelets at baseline (grade 0-2 vs grade 3/4)
- Lymphocytes before start of LD chemotherapy (grade 3/4 vs grade 0)
- Lymphocytes before start of LD chemotherapy (grade 1/2 vs grade 0)
- Ferritin (high vs low/normal)
- ECOG PS (0 vs 1)
- Age group (<65 years ≥65 years)
- Metabolic tumor volume (<100 vs ≥100 mL)
- IPI risk (≥2 vs <2 risk factors)
- IFNy
- IL10
- IL12
- P70
- IL6
- IL8
- IL13
- TNFα

Cl=confidence interval. CRP=C-reactive protein. CTCAE=Common Terminology Criteria for Adverse Events. ECOG=Eastern Cooperative Oncology Group. IFN=interferon. IL=interleukin.

LDH=lactate dehydrogenase. LLN=lower limit of normal. TNF=tumour necrosis factor. ULN=upper limit of normal. Bulky disease is defined as > 10 cm in longest lesion dimension.

100

80

60

40

20

Grade 3-4 16 2 0 (0) (1) (1)

Grade 0-2

1) Timing of CAR-T Therapy

- disease status at the time of CAR-T and outcome

- The horizontal line within each box represents the median, the lower and upper borders of each box represent the IQR, and the horizontal lines outside each box show the range (excluding outliers).
- Red lines denote mean values.

7th POSTGRADUATE

1) Timing of CAR-T Therapy

- disease status at the time of CAR-T and outcome

7th POSTGRADUATE

Multivariate Logistic Regression Model for Post-Infusion Best Overall Response (CR/PR vs SD/PD/UNK) in Arm A (second-line CAR-T) Odds Ratio Estimates

Variable	Point Estimate	95% Wald Confidence Limits		
CR/PR before infusion				
vs. SD/PD before infusion at mean cell dose	7.75	3.23	18.62	

The odds ratio is the odds of having a best overall response of CR/PR vs. SD/PD/UNK; *i.e.*, an odds ratio >1 means patients are more likely to have a best overall response of CR/PR.

> Bishop *et al.* LBA-6. ASH 2021; Bishop *et al.* N Engl J Med. 2021 Dec 14. Epub

EFS time is relative to date of tisagenlecleucel infusion; median time from pre-infusion disease assessment to infusion was 10 days (range, 2-57; Q1-Q3, 8-15). EFS events defined as PD/SD after day 71 from randomization or death at any time.

CAR-T as 3rd-line or Later Therapy: Lessons from Long-term Follow-up

Chong EA, Ruella M, Schuster SJ. N Engl J Med 2021;384(7):673-674.

7th POSTGRADUATE

Neelapu SS, et al. Blood. 2023; Epub ahead of print

2) Lymphodepletion before CAR-T Infusion

- is fludarabine-cyclophosphamide required?

7th POSTGRADUATE

ORIGINAL ARTICLE

Bendamustine is safe and effective for lymphodepletion before tisagenlecleucel in patients with refractory or relapsed large B-cell lymphomas

G. Ghilardi^{1,2,3†}, E. A. Chong^{1,2,3†}, J. Svoboda^{1,2,3}, P. Wohlfarth⁴, S. D. Nasta^{1,3}, S. Williamson⁵, J. D. Landsburg^{1,3}, J. N. Gerson^{1,3}, S. K. Barta^{1,2,3}, R. Pajarillo^{1,2,3}, J. Myers⁵, A. I. Chen⁵, L. Schachter⁵, R. Yelton^{1,2}, H. J. Ballard^{1,3}, A. Hodges Dwinal⁵, S. Gier^{2,3}, D. Victoriano^{2,3}, E. Weber^{1,3}, E. Napier^{1,3}, A. Garfall^{2,3}, D. L. Porter^{1,3}, U. Jäger⁴, R. T. Maziarz⁵, M. Ruella^{1,2,3†} & S. J. Schuster^{1,2,3*†}

¹Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia; ²Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia; ³Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, USA; ⁴Medical University of Vienna, Division of Hematology and Hemostaseology, Department of Medicine I Wien, Comprehensive Cancer Center, Vienna, Austria; ⁵Oregon Health & Science University Knight Cancer Institute, Adult Blood and Marrow Stem Cell Transplant & Cell Therapy Program, Portland, USA

2) Lymphodepletion before CAR-T Infusion

ORIGINAL ARTICLE

7th POSTGRADUATE

- is fludarabine-cyclophosphamide required?

Bendamustine is safe and effective for lymphodepletion

- Retrospective comparison of fludarabine/cyclophosphamide and bendamustine as lymphodepletion prior to tisagenlecleucel
- University of Pennsylvania; Oregon Health & Science University; University of Vienna
- Bendamustine, n = 90; Fludarabine/Cyclophosphamide n = 42; patient characteristics balanced between LD as shown below

Characteristics	Total population N = 132 (100%)	Flu/Cy n = 42 (31.8%)	Benda n = 90 (68.2%)	ρ	Characteristics	Total population N = 132 (100%)	Flu/Cy n = 42 (31.8%)	Benda n = 90 (68.2%)	p
Sex Female	50 (37.9%)	16 (38.1%)	34 (37.8%)	0.072	No. of previous lines of therapy (median [IQR])	3 [3-4]	3 [2-4]	3 [3-4]	0.569
Male	82 (62.1%)	26 (61.9%)	56 (62.2%)	0.972	Serum LDH (N=131)				
Age at infusion (median – [IQR])	65 [56-70]	67 [56-73]	65 [56-70]	0.222	Normal	68 (51.9%) 63 (48,1%)	20 (47.6%)	48 (53.9%)	0.500
Diagnosis					Pre-LD CRP (N=54)	00(10111)	£2 (02.111)		
DLBCL NOS	66 (50.0%)	27 (64.3%)	39 (43.3%)		Normal	34 (63.0)	13 (65.0)	21 (61.8)	
HGBCL NOS	5 (3.8%)	1 (2.4%)	4 (4.4%)		Elevated	20 (37.0)	7 (35.0)	13 (38.2)	0.812
tFL.	47 (35.6%)	12 (28.6%)	35 (38.9%)	0.128	Pre-LD Ferritin (N=52)				
HGBCL with MYC + BCL2 and/or BCL6 rearrangements	14 (10.6%)	2 (4.8%)	12 (13.3%)		Normal Elevated	28 (53.8) 24 (46.2)	11 (55.0) 9 (45.0)	17 (53.1) 15 (46.9)	0.895
rearrangements					Bulky disease (>10cm)				
ECOG PS					No	119 (90.2%)	36 (85.7%)	84 (92.2%)	
0-1	124 (93.9%)	39 (92.9%)	85 (94.4%)	0.722	Yes	13 (9.8%)	6 (14.3%)	7 (7.8%)	0.242
≥2	8 (6.1%)	3 (7.1%)	5 (5.6%)		Bridging therapy				
Renal function					No	27 (20.5%)	11 (26.2%)	16 (17.8%)	0.264
Normal	108 (81.8%)	32 (76.2%)	76 (84.4%)	0.262	Yes	105 (79.5%)	31 (73.4%)	74 (82.2%)	0.204
Reduced	24 (18.2%)	10 (23.8%)	14 (15.6%)	0.202					
Previous ASCT									
No	104 (78.8%)	31 (63.8%)	73 (81.1%)	0.220					
Yes	28 (21.2%)	11 (26.2%)	17 (18.9%)	0.339					

Ghilardi G, et al. Ann Oncol. 2022;S0923-7534(22)01722-7. doi:10.1016/j.annonc.2022.05.521

Bendamustine, n = 90

2) Lymphodepletion before CAR-T Infusion

ORIGINAL ARTICLE

7th POSTGRADUATE

- is fludarabine-cyclophosphamide required?

Bendamustine is safe and effective for lymphodepletion

3

21

100

80

60

40 20-

0

Probability of PFS (%)

N. at risk

0

0

10

Ghilardi G, et al. Ann Oncol. 2022;S0923-7534(22)01722-7. doi:10.1016/j.annonc.2022.05.521

3) Response Assessments after CAR-T Infusion

7th POSTGRADUATE

- response assessments and long-term outcomes

<u>UPenn CTL019 Trial¹</u>	JULIET Trial ²	ZUMA-1 Trial ³
n = 24	n = 115	n = 101
Median follow-up: 63.7 months	Median follow-up: 40.3 months	Median follow-up: 63.1 months
Best ORR: 58%, CR: 46%	Best ORR: 53%, CR: 39%	Best ORR: 83%, CR: 58%
5-year PFS: 31% (95% CI: 14-51)	3-year PFS estimate: ~31%	5-year PFS: 31.8% (95% CI: 22.9-41.1)
50% 30% No. at Risk 24 10 9 5 5 3 0	(E) 90 90 90 90 90 90 90 90 90 90	100 100 100 100 100 100 100 100

¹Chong EA, Ruella M, Schuster SJ. N Engl J Med 2021;384(7):673-674; ²Schuster S. J. et al. Lancet Oncol. 2021; 22(10): 1403-1415; ³Neelapu SS, et al. Blood. 2023; Epub ahead of print.

3) Response Assessments after CAR-T Infusion

7th POSTGRADUATE

- response assessments and long-term outcomes

PET/CT Requirements in Registrational Trials of 3rd or Later Line CAR-T

¹Neelapu SS, et al. N Engl J Med (2017) 377:2531-44; ²Locke FL, et al. Lancet Oncol (2019) 20:31-42; ³Schuster SJ, et al. N Engl J Med (2019) 380(1):45-56; ⁴Abramson J, et al. Lancet (2020) 396:839-52.

3) Response Assessments after CAR-T Infusion

- response assessments and long-term outcomes

PET/CT Use in 3 Registrational CAR-T Clinical Trials

1. PET/CT detects more late response conversions than CT

7th POSTGRADUATE

	JULIET ¹	ZUMA-1 ²	TRANSCEND ^{3,6}	
Response evaluable pts [*] , n	68	101	192	
Median time to response (CR or PR)	0.9 months (range, 0.7-3.3)	0.9 months (range, 0. 8 -6.2)	1 month (range, 0.7-8.9)	

 st imaging with measurable disease after completion of bridging chemotherapy and prior to CAR-T

2. PET/CT or CT response assessment at Month-1 is not prognostically useful due to subsequent conversions of PR to CR

PR conversions to CR	JULIET ⁴ (Month-1 CT)	ZUMA-1 ⁵ (Month-1 PET/CT)	
Month-1 Partial Response, n/total CR (best response)	12/37((32%)	33/55(60%)	
Median time from PR to CR conversion	2 months (range, 1-17.0)	not reported (most by 6 months; as late as 15 months)	

*JULIET used CT for Month-1 response assessment; ZUMA-1 and TRANSCEND used PET/CT for Month-1 response assessment

¹https://www.fda.gov/media/107296; ²https://www.fda.gov/media/108377; ³https://www.fda.gov/media/145711; ⁴Schuster SJ, *et al.* N Engl J Med (2019) 380(1):45-56; ⁵Locke FL, *et al.* Lancet Oncol (2019) 20:31-42; ⁶Abramson J, *et al.* Lancet (2020) 396:839-52.

3) Response Assessments after CAR-T Infusion

7th POSTGRADUATE

- response assessments and long-term outcomes

Case: Pseudoprogression during Early Response Assessment

53-year-old woman with refractory large cell transformation of marginal zone lymphoma.

4) Immune Reconstitution

- is persistent B-cell aplasia related to PFS in NHL?

UPenn CTL019 trial

B-cell counts and immunoglobulin levels in patients in remission for \geq 1 year

	Normalized N (%)	Median time to normal	Interquartile range	N (%) patients with < 2 x LLN, median follow-up
B cells detectable*	11/16 (69)	11.7 mo	5.8-19.6 mo	5/16 (31), 24.0 mo follow-up
$IgM \ge 40 mg/dL$	11/16 (69)	11.7 mo	8.8-22.6 mo	5/16 (31), 55.5 mo follow-up
$IgG \ge 650 \text{ mg/dL}^{\dagger}$	6/16 (38)	11.7 mo	5.8-14.2 mo	5/16 (31), 28.8 mo follow-up
IgA $\ge 50 \text{ mg/dL}$	9/16 (56)	14.0 mo	0-40.1 mo	7/16 (44), 55.4 mo follow-up

*detectable: two consecutive measurements of B cell counts $\ge 2\%$

7th POSTGRADUATE

[†] Of note, although a total of 6 patients started IVIg after CTL019, one of these patients was not in remission for over 1 year. Patients in long-term CR who received IVIg (N=5) after CTL019 are included in the total number of patients assessed. Patients who received IVIg are not included in the group of patients whose serum IgG normalized, nor are they included in numerator for the percent of patients with low serum IgG at last follow-up.

 \sim 1/2 of patients in CR recover B cells within 1 year

~ 3/4 of patients in CR recover B cells within 2 years

~ 2/3 recover immunoglobulins within 2 years

B-cell counts over time in patients with ongoing responses

Zuma-1 trial

n (%)	Ongoing Response (n=29)	n (%)	Ongoing Response (n=29)
B cells tested at Baseline	23 (79.3)	B cells tested at Month 12	26 (89.7)
No B cells	11 (47.8)	No B cells	13 (50.0)
With B cells	12 (52.2)	With B cells	13 (50.0)
B cells tested at Month 3	27 (93.1)	B cells tested at Month 15	27 (93.1)
No B cells	21 (77.8)	No B cells	10 (37.0)
With B cells	5 (18.5)	With B cells	17 (63.0)
Undetermined	1 (3.7)	B cells tested at Month 18	23 (79 3)
B cells tested at Month 6	24 (82.8)	No D cello	23(75.5)
No B cells	19 (79.2)	NO B CEIIS	7 (30.4)
With B cells	5 (20.8)	With B cells	16 (69.6)
Undetermined	-	B cells tested at Month 24	25 (86.2)
B cells tested at Month 9	25 (86.2)	No B cells	7 (28.0)
No B cells	10 (40.0)	With B cells	18 (72.0)
With B cells	15 (60.0)		

~ 1/2 of patients in ongoing response have B cells at 1 year ~ 3/4 of patients in ongoing response have B cells at 2 years

203 v

4) Immune Reconstitution

UPenn CTL019 trial

T-cell counts in patients in remission for > 1 year

7th POSTGRADUATE

	% Low T cell counts N (%)	Median time to normal	Interquartile range	Longest time to normal
CD3 count ≥ 900 /uL	11/16 (69)	4.6 mo	3.9-4.9 mo	8.9 mo
CD4 count ≥ 560 / uL	11/16 (69)	4.8 mo	4.1-7.4 mo	14.4 mo
CD8 count ≥ 260 / uL	8/16 (50)	4.7 mo	4.0-5.4 mo	8.9 mo

All patients in CR \geq 1 year recovered normal CD3, CD4 and CD8 T-cell counts

Chong EA, Ruella M, Schuster SJ. N Engl J Med 2021;384(7):673-674.

Moffitt Cancer Center axi-cel data (N=85)

- CD4 T cells decreased from baseline and were persistently low with median CD4 count 155 cells/µL at 1 year after axi-cel (n=19, range: 33– 269).
- 36.5% of patients had infections within 30 days after axi-cel, and 44.3% had infections between days 31 and 360.

Conclusions:

1) Timing of CAR-T Therapy

7th POSTGRADUATE

- At early follow-up, EFS outcomes for 2nd and <u>></u> 3rd –line CAR-T in large B-cell lymphomas appear similar, at least for axi-cel; however, earlier application of CAR-T may save patients additional potentially toxic therapies.
- Uncontrolled tumor growth, high serum LDH, and bulky disease pre-infusion bodes poor outcomes for
 <u>></u> 3rd-line CAR-T in large Bcell lymphomas.
- 2) Lymphodepletion before CAR-T Infusion
 - Fludarabine-cyclophosphamide is not required, but randomized trials are needed to define the best lymphodepletion regimens.
- 3) Response Assessments after CAR-T Infusion
 - Survival statistics rather than response rates should be used to assess CAR-T efficacy.
- 4) Immune Reconstitution
 - Persistent B-cell aplasia after CAR-T is not required for remission in large B-cell lymphomas; most patients in remission recover B cells.
 - Patients who achieve complete remission after CAR-T for large B-cell lymphomas can reconstitute their immune system.

<u>Disclaimers</u>: These impressions are based on personal experiences and observations in the clinical research and practice settings, as well as on impressions gained from the literature and from discussions with other clinicians and investigators. They are *most specifically related to CD19-directed, 4-1BB co-stimulated CAR-T cell products for treatment of large B-cell lymphomas*. These opinions should not be considered as dogma, but rather as current impressions that may require further validation through additional experience and formal clinical investigation.

CAR-T as 3rd-line or Later Therapy: Lessons from Long-term Follow-up

Molte Grazie Questions & Comments

7th POSTGRADUATE

